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1. Application	

1. Application 
1.1. Why does OTA use two binary files? Are “user1.bin” and 

“user2.bin” different? 
Yes, user1.bin and user2.bin are two different files. They must be generated with the same 
flash/boot configuration for OTA to work properly. The two different binary files are required 
because user1.bin can download user2.bin and similarly, user2.bin can download 
user1.bin during OTA. This ensures that the upgrade process does not cause corruption of 
the main binary file in case of power failure during upgrade. 

1.2. How do I generate user1.bin and user2.bin? 
You may run gen_mish.sh in terminal to generate the files user1.bin and user2.bin 
separately. The steps are: 

1. Compile user1.bin using correct flash and boot settings. 

2. Do a “make clean”, which clears temporary files generated in the first step. 

3. Compile user2.bin, ensure you use the same options that you used to generate 
user1.bin. 

1.3. To what location should I download eagle.irom0.text.bin if my 
application uses non-FOTA firmware 

For both Non-OS SDK and RTOS SDK, the location of firmware binary files is 
determined by the contents of the appropriate linker script. In case of non-FOTA 
firmware, the user code is contained in eagle.irom0.text.bin. The location of this binary 
file in flash is determined by the linker script eagle.app.v6.ld located in SDK/ld. 

!  

The address marked in blue is the flash address of eagle.irom0.text.bin. In this 
example, it is 0x10000. 

⚠  Notice: 

The default location of eagle.irom0.text.bin is NOT the same across all versions of ESP8266 SDK. You 
can determine the flash address for your SDK version as follows:

Espressif ! /!1 38 2019.03



!

1. Application	

1.4. OTA failed, what could be the reasons? 
There could be many common reasons for OTA failure. We recommend referring to the 
document ESP8266 FOTA Guide before you use the FOTA APIs. 

Here are some quick checklist to troubleshoot OTA failure: 

• Make sure that you select the correct flash size when downloading the firmware to flash. 

• The first time you download a new firmware, always also download blank.bin. 

• Confirm that user1.bin and user2.bin (optional) downloaded to the correct locations. 

• Make sure you generate user1.bin and user2.bin with the same flash/boot 
configuration options. 

1.5. How do I provide updates through my own server? 
If you want to serve OTA updates through your own server, you must make sure that the 
server can understand and respond to firmware upgrade requests. 

The update request process can be outlined as follows: 

1. Send HEAD to cloud, requesting the binary length. Server responds with HTTP package 
(with binary length information included in the HTTP HEAD). 

2. Based on the binary length information thus obtained, erase ESP8266’s flash sectors to 
be upgraded with API (spi_flash_erase_sector). 

3. Send GET request to obtain the binary file from the server. The erased area can then be 
programmed with the new binary file. 

1.6. Can I set up my own cloud server for serving updates for 
ESP8266 devices? 

Users can serve updates via their own custom server. The server should be able to serve 
HTTP requests and should have device control features. 

For API reference, please visit: http://iot.espressif.cn/#/api-en/. 

1.7. How will the ESP8266 communicate with the cloud server? 
Standard HTTP protocol may be used to connect to the update server. For example, when 
your custom server is running, when the ESP8266 device starts a socket and sends HTTP 
request: 

GET	/your-bin-file-path.bin	HTTP/1.1 
Host:	yourdomain.com 
Connection:	keep-alive 
Cache-Control:	max-age=0 
Accept: 
text/html,	application/xhtml+xml,	application/xml;	q=0.9,	image/webp,	*/*;	
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1. Application	

q=0.8 
User-Agent: 
Mozilla/5.0	(X11;	Linux	x86_64)	AppleWebKit/537.36	(KHTML, 
like	Gecko)	Chrome/39.0.2171.95	Safari/537.36 
Accept-Encoding:	gzip,	deflate,	sdch 
Accept-Language: 
en-US,	en;q=0.8,	ja;	q=0.6,zh-CN;	q=0.4,zh-TW;	q=0.2


telnet	<sitename>	<port_number> 

However, make sure that telnet is enabled on your PC before using this command. You 
may also use standard terminal emulators such as TeraTerm that support telnet. 

1.8. Why does SmartConfig fail? 
Here are some probable reasons why SmartConfig might fail: 

• APP version is not matched with SDK or SmartConfig version. 

• The router under configuration is a 5 GHz-only router. 

• Some other API was called during SmartConfig (please do not call any APIs under 
SmartConfig is done). 

• When using AT command, do not call smartconfig_stop before device gets IP from 
router. 

If the above do not solve your problem, please send us the debug log so that we can 
analyze the problem. 

1.9. What is the corresponding version of APP or SDK for a given 
version of SmartConfig? 

If the API smartconfig_start() is called by the user, “SC version: vX.X.X” will be printed 
out for reference. 

The related SDK and APP versions for SmartConfig versions are listed below: 

⚠  Notice: 

The HTTP protocol specifies that requests end with “\r\n\r\n”, therefore please do not use this combination 
in between the entire request phrase.

SDK version SmartConfig version APP version

sdk v1.2.0 smartconfig v2.4 app v0.3.4.x

sdk v1.3.0 smartconfig v2.5 app v0.3.4.x

sdk v1.3.0 smartconfig v2.5.1 app v0.3.4.x

sdk v1.4.0 smartconfig v2.5.2 app v0.3.4.x
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1.10. Does ESP8266 support HTTP hosting? 
Yes, it does. ESP8266 can run as a server in both SoftAP and Station modes.  

• When running as a server in SoftAP mode, clients can directly access the ESP8266 host 
or server at 192.168.4.1 (default) IP address.  

• When the server is accessed via a router, the IP address should be the one allocated to 
the ESP8266 by the router.  

• When using SDK to write native code, please use espconn structure and related APIs.  

• When using AT commands, start a server using AT+CIPSERVER command. 

1.11. How do I transmit HTTP packets using AT commands? 
1. Use AT command to configure SoftAP + Station mode: AT+CWMODE=3	//	set	

softAP+station	mode 
2. Use AT command to connect to the router: AT+CWJAP=“SSID”,	“password”	//	

ESP8266	station	connect	to	router 

3. Create a TCP connection and transmit data according to the HTTP packet format, as 
shown in the figure below. Please note that the line feed characters [(0x0d 0x0a) or (CR 
LF)] are essential for line termination and must NOT be left out. 

!  

4. Receive the returned message from HTTP packets. 

!  

sdk v1.5.0 smartconfig v2.5.3 app v0.3.4.x

sdk v1.5.4 smartconfig v2.5.4 app v0.3.4.x
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1.12. How do I define my own functions in AT+ set and how to pass 
variables between them? 

There is an example of how to define an AT command “AT+TEST” in AT demo folder of 
Non-OS SDK (\ESP8266_NONOS_SDK\examples\at\user\user_main.c). 

The structure at_funcationType is used to define the four variants of an AT command. We 
use command “AT+TEST” as an example and demonstrate how it can be implemented. 

• Type at_testCmd: Test command in the format of AT+TEST=?. In AT demo, the registered 
callback is at_testCmdTest. The test demand could be programmed to return the range 
of the parameter value. If at_testCmd is registered as NULL, it will not be implemented. 

• Type at_queryCmd: Query command in the format of	AT+TEST=?. In AT demo, the 
registered callback is at_queryCmdTest. The test demand could be programmed to 
return the current value. If at_queryCmdTest is registered as NULL, it will not be 
implemented. 

• Type at_setupCmd: Setup command in the format of AT+TEST=parameter1,parameter2,
……，. In AT demo, the registered callback is at_setupCmdTest. The setup command 
can be programmed to set the parameter value. If at_setupCmdTest is registered as 
NULL, it will not be implemented. 

• Type at_exeCmd: Execution command in the format of AT+TEST. In AT demo, the 
registered callback is at_exeCmdTest. The execution command can be programmed to 
execute an operation. If at_exeCmdTest is registered as NULL, it will not be implemented. 

1.13. Where does the Product ID used in the near field of WeChat 
come from? 

A device ID needs to be established. For example, device ID = 1234 needs to be 
established for a device using a client’s WeChat account. 

Use the following command: 

curl	-q	“https://api.weixin.qq.com/cgi-bin/token?
grant_type=client_credential&appid=wx0f74f861897f84b5&secret=your_WeChatnam
e_32characters_please” 

//Note: This is to obtain the access token (“your_WeChatname_32characters_please” 
represents the client’s WeChat API App Secret, which can be acquired through application 
and should be 32 characters long.). 

Returned: 

{"access_token":"L2_2V1E98Vk-	
jTXenXDZjDT0GaudUn_VGTRa7O98hdfT0lTZa2B7nj6YvXN01gssQa3ZraRgjALuCvxd-
SamuPR885KJabaw1EYLA0kns-Yglr4ryolEhHb-QcnWMaNqSEDjACANZY","expires_in":
7200} 
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curl	-d	'{"device_num":"1","device_list":
[{"id":"1234","mac":"18fe3497d500","connect_protocol":"4","auth_key":"00000
000000000000000000000000000","close_strategy":"1","conn_strategy":"1","cryp
t_method":"0","auth_ver":"0","manu_mac_pos":"-2","ser_mac_pos":"-2"}],"op_t
ype":"0",	"product_id":	5157}'	"https://api.weixin.qq.com/device/
authorize_device?access_token=L2_2V1E98Vk-
jTXenXDZjDT0GaudUn_VGTRa7O98hdfT0lTZa2B7nj6YvXN01gssQa3ZraRgjALuCvxd-
SamuPR885KJabaw1EYLA0kns-Yglr4ryolEhHb-QcnWMaNqSEDjACANZY" 

//Note: Establish the device ID = 1234. 

Next, the AT command needs to be used: 

AT+CWSTARTDISCOVER=“gh_9e2cff3dfa51”,”1234”,1. (In “gh_9e2cff3dfa51”, 
“9e2cff3dfa51” is your WeChat official account.) 

1.14. How to define a custom AT command in ESP8266 and what is 
the length limit for it? 

Users can add custom AT commands to ESP8266’s official AT commands, by using 
ESP8266_NONOS_SDK\examples\at sample code. 

The maximum data length of an AT command supported by SDK is 128 bytes (including 
terminator “\r\n”). The lengths of AT command and parameters are not individually defined. 

For example, 
AT+CMDTEST=param1,param2,param3,….paramN\r\n


strlen(“AT+CMDTEST=param1,param2,param3,....paramN\r\n”)<=128	bytes 

For details of SDK please refer to ESP8266 SDKs & Demos. 

Espressif ! /!6 38 2019.03

http://www.espressif.com/en/support/download/sdks-demos?keys=&field_type_tid%5B%5D=14


!

2. Cloud	

2. Cloud 
2.1. What is ESP8266 device life cycle on the Espressif cloud 

platform? 
1. Once the master-device-key is downloaded, the ESP8266 device is ready for use. 

2. The end user can use Airkiss/ESP-TOUCH to connect ESP8266 device to the network. 
At the same time, the device sends random character token generated by App as the 
permission identifier. Then the device calls /v1/device/activate and sends token to the 
cloud. 

3. The end user uses App, calls /v1/device/authorize interface (by using the random 
token generated before) and confirms ownership of the device (i.e. becomes the owner 
and acquires the owner key). 

4. The ownership of the ESP8266 device is same as the ownership of the device key 
through which the end user can control the device. 

5. The end user can call /v1/user/devices to list owned devices and the corresponding 
device keys. 

6. As the owner of the device, the end user can call /v1/device/share to share the device 
with others who can call /v1/device/authorize to get authorization. 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3. System 
3.1. What is the role of watchdog timer in the ESP8266? 

In order to improve the robustness of the system in high interference operating 
environments, the ESP8266 integrates a two-level watchdog mechanism that includes the 
software watchdog and the hardware watchdog. By default both the watchdog timers are 
enabled. 

3.2. What is the watchdog timeout interval? What happens on a 
timeout event? 

The hardware watchdog interrupt interval is 0.8*2048 ms, that is 1638.4 ms. The interrupt 
handling interval is 0.8*8192 ms, equal to 6553.6 ms. The interrupt handling interval is the 
time limit to feed the watchdog after the interrupt occurs. If the interrupt handling interval 
expires, it will trigger a hardware watchdog reset. As a result, in the cases where there is 
only hardware watchdog, if a program runs for over 6553.6 ms, then it could cause a 
hardware watchdog reset. If the program runs for over 8192 ms, then it will invoke a 
watchdog reset for sure. 

The software watchdog is based on MAC timer and task arrangement. The interrupt interval 
is 1600 ms, so is the interrupt handling interval. As a result, in the cases where there are 
both software and hardware watchdogs, if a program runs for over 1600 ms, it could cause 
a software watchdog reset. If the program runs for over 3200 ms, it will invoke a watchdog 
reset for sure 

3.3. My application does not really need the watchdog timer, can I 
disable it?  

The current SDK allows disabling the software watchdog only. The following methods can 
be taken to avoid watchdog reset when user program occupies CPU for too long: 

1. If your routine needs a time frame of duration between software reset and hardware 
watchdog reset, you may use system_soft_wdt_stop	() to disable the software 
watchdog. After the program has been executed, you can restart the software 
watchdog with system_soft_wdt_restart	(). 

2. You may feed the watchdog in between your codes by adding system_soft_wdt_feed	
() so that the watchdog is updated before it issues a reset. 
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3.4. What is the best way to introduce a 10-second delay in my 
program or poll for an input? 

The watchdog timer will not allow endless loops. The watchdog will overflow and cause 
reset if the user program is stuck polling for an event for too long or is using loops for 
delays. We recommend using call-back functions and timer APIs for delay. 

For polling an event, if possible, always use interrupts or timer APIs to check often. Most 
events can be associated with call-back functions within the SDK and therefore polling can 
be entirely avoided in most cases. 

3.5. How do I debug memory leak in my Non-OS SDK application? 
For Non-OS SDK users, users can debug memory leak by defining MEMLEAK_DEBUG to 
enable the debugging function. 

Calls to os_malloc,	os_zalloc,	os_calloc,	os_realloc,	os_free is recorded and then 
the API system_print_meminfo() can be used to print heap memory usage. 

Steps to debug memory leaks: 

1. Modify the main makefile in the project and define DMEMLEAK_DEBUG after 
CONFIGURATION_DEFINES. 

i.e. CONFIGURATION_DEFINES	=	-DMEMLEAK_DEBUG 

2. In user code, such as the user_main.c file, please include the header file “mem.h” and 
the function: 
#include	“mem.h" 
bool	ICACHE_FLASH_ATTR	check_memleak_debug_enable	()


{


							return	MEMLEAK_DEBUG_ENABLE;


}


3. Call system_print_meminfo() API where the cause of memory leakage might possibly 
be. We recommend using this API at key positions only.  

3.6. How do I debug memory leak in my RTOS SDK application? 
RTOS SDK does not support the same method of memory leak debugging as the Non-OS 
SDK. Please refer to FreeRTOS documentation for details on memory monitoring and 
leakage debugging techniques. 

3.7. How to optimize the memory usage of ESP8266 applications? 
Users can optimize memory usage in ESP8266 applications and reduce the memory 
footprint of applications using the following four methods: 
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1. Store strings in flash: 

• Locate some strings into the flash, especially long strings such as HTML requests and 
response templates. 

For example, if a string is originally defined in this manner: 
#define	test_string 	 	"hello	world" 

you can define it in the following way: 
static	const	char	test_string[]	ICACHE_RODATA_ATTR	=	"hello	world"; 

• When defining the string constant with the ICACHE_RODATA_ATTR, users must access the 
content with word-aligned read operations. As the data in the flash needs to be read in 
multiples of 4 bytes, users can define a macro to acquire the aligned string length: 
#define	GET_ALIGN_STRING_LEN(str) 	 	((strlen(str)	+	3)	&	~3) 

When using the string, dynamically allocate a new array object to read and store data 
from the flash. Then use the os_memcpy API to copy the contents: 
unsigned	int	str_len	= GET_ALIGN_STRING_LEN(test_string);


char	*tmp_string	=	(char	*)os_malloc(str_len);


os_memcpy(tmp_string,	test_string,	str_len); 
• Use tmp_string instead of test_string in your application code. This will also address 

the issue of exceptions caused in applications by unaligned access to flash memory 
contents, while reducing the RAM footprint of your application. 

……. 

• When the user code is done using the data acquired above, it must free the allocated 
memory using  
os_free(tmp_string); 

2. Store const data in flash: 

• Directly load unit32 arrays to flash. For example: 
const	uint32	array[4]	ICACHE_RODATA_ATTR	=	{0x11111111,	0x22222222,	
0x33333333,	0x44444444}; 

Users can directly use array[0]. 

• But read access of unit8 arrays and unit16 arrays must be aligned to the 4-byte 
boundary. For example: 
const	uint8	array[7]	ICACHE_RODATA_ATTR	=	{0x01,	0x02,	0x03,	0x04,	0x05,	
0x06,	0x07}; 

⚠  Notice: 

Failure to do so and repeatedly allocating memory will reduce the memory available for core functionalities 
and may cause malfunction or failure in APIs.
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• If you need to read the elements in a char array in multiples of byte, try operate with 
software and read the elements in multiples of 4 bytes, then read one of the bytes 
according to the offset. Direct read access of array[0] will cause crash. 

• As for data structure, the common method is to allocate an appropriate amount of 
memory larger than the size of the data structure you intend to read. Read data in the 
flash in multiples of 4 bytes and load it to RAM. Use the object pointer in code as usual, 
as is shown in the first method above. Simply modify the code to read a structure 
instead of an array. 

3. Store debug strings in flash: 

Strings printed by the in-built function printf	are allocated to RAM by default and take up 
space. If you do not need to frequently print the log or if the debug string is too long, use 
the optimized os_printf API to load the debug strings to the flash instead of RAM. 

4. Avoid using global variables: 

Global variables often take up space unnecessarily throughout the application lifetime. 
Espressif provides dynamic memory allocation APIs for reducing the usage of global 
variables. For event-based programming, always use os_malloc and os_free to 
dynamically allocate space as required. However, we do not recommend frequent 
allocation/deallocation of varying sizes. 

3.8. How can I track down the cause of a “fatal exception”? 
Fatal exceptions can be traced down if you have the assembly file (*.S) that was used to 
generate the binary. For example, should you encounter an exception when running 
user1.bin: 
Fatal	exception	(28): 
epc1=0x4025bfa6,	epc2=0x00000000,	epc3=0x00000000,	excvaddr=0x0000000f,	
depc=0x00000000 
In this case, you should inspect 0x4025bfa6 in user1.S to find out the cause of the 
exception. 

When running flash.bin and irom0text.bin, the cause of the exception can be found in 
eagle.S. 

3.9. How many timers does the ESP8266 have? 
The ESP8266 features a hardware timer and a software timer.  

The timer accessed by os_timer APIs is the software timer and it does not generate an 
“interrupt”, it generates a task that can be used to put a normal task on queue. 

The hardware timer however generates an interrupt which can be used to trigger a certain 
task. Note that interrupts are not intended for processor intensive tasks. 
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3.10. Are there any specific conditions for implementing timer 
interrupt routines? 

Please refer to ESP8266 Non-OS SDK API Reference and ESP8266 RTOS SDK API 
Reference for the SDK you are using for details. However, when Non-OS SDK is used, 
functions declared as ICACHE_FLASH_ATTR must not be called from within a hardware 
interrupt handler. Also, do not occupy the CPU for long when inside an interrupt handler. 

3.11. How do I tweak the transmit power? 
Users can use API system_phy_set_max_tpw to set the maximum value of RF TX Power. 

We also recommend using the flash download tool to tweak the settings as per your 
requirements. Click GenInitBin to generate esp_init_data_default.bin and then burn it into 
the SPI flash. 

• LowPowerEn: Set Tx Power for each mode. 

• BackOffEn: Reduce the same value of Tx power in each mode. 

• PowerLimitEn: Set the limitation of maximum Tx power. 

• Click GenInitBin to generate esp_init_data_default.bin, and replace the default one. 

!  

3.12. What is the significance of the “ICACHE_FLASH_ATTR” 
attribute in the SDK? 

For ESP8266_Non-OS SDK: 

Functions attributed with ICACHE_FLASH_ATTR are located in the IROM section. They will run 
from cache when called by CPU. Conversely, functions without ICACHE_FLASH_ATTR are 
loaded into IRAM upon power-on. Due to limited IRAM, we can not load all the codes into 
IRAM at one time. So most functions are attributed with ICACHE_FLASH_ATTR	and loaded 
into IROM. 
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Note: Do not use ICACHE_FLASH_ATTR-functions within an interrupt handler, as it may 
conflict with the flash R/W operations. 

For ESP8266_RTOS SDK: 

Functions are located in the IROM section by default and do not need to be attributed with 
ICACHE_FLASH_ATTR. Interrupt handlers can also run from IROM. Hence, if functions called 
frequently need to be run from IRAM, they should be attributed with IRAM_ATTR. 

3.13. Why do I get compile errors when using IRAM_ATTR in Non-
OS SDK? 

The default function attribute is IRAM_ATTR in Non-OS SDK. Therefore, if you want the 
function to reside in IRAM, please leave out the ICACHE_FLASH_ATTR attribution in the 
function definition/declaration. 

3.14. Why am I getting compile error? Why can’t the code fit in 
“irom0_0_seg”? 

This means that the code is too large for IROM. Here are some suggestions to resolve the 
problem: 

For SDK_v0.9.5 or later versions: 

1. Compile with default configuration to generate eagle.flash.bin and 
eagle.irom0text.bin. 

(1) If the total size of eagle.flash.bin and eagle.irom0text.bin is more than 236 KB, 
you will need a new flash chip larger than 512 KB. 

(2) If the total size of eagle.flash.bin and eagle.irom0text.bin is less than 236 KB, 
continue with step 2. 

2. Revise the file eagle.app.v6.new.512.app1.ld in SDK/ld as follows: 

In the line  

rom0_0_seg:	 	 	 	 	 	 	 	 	 	 	 	org	=	0x40201010,	len	=	0x2B000, 

change the value of len according to the size of your eagle.irom0text.bin. 

For example, if the size of eagle.irom0text.bin is 179 KB, change the configuration to 
irom0_0_seg:	 	 	 	 	 	 	 	 	 	 	 	 	org	=	0x40201010,	len	=	0x2D000 
3. Now, compile and generate user1.bin by selecting boot_v.1.2+. 

Besides: 

In your source code, load into IRAM functions without “ICACHE_FLASH_ATTR” which can be 
32 KB at most; load into IROM functions with “ICACHE_FLASH_ATTR” in irom0_0_seg. 

Due to limited RAM, functions in IRAM will be loaded to ram and run upon power-on; 
functions in IROM will be loaded to cache from flash and run only if it is called. 
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3.15. Does ESP8266 start user code execution from a regular main 
routine? 

No. The entry point is user_init. 

3.16. What is the proper method of pointer operations? 
Read and write accesses to the RAM must be aligned to the 4-byte (word) boundary, so is 
pointer conversion. Otherwise, the conversion failure will cause malfunction. For example, 
please use os_memcpy	(memcpy) to convert the pointer instead of float	temp	=	
*((float*)data). 

3.17. What are the differences between RTOS SDK and Non-OS 
SDK? 

The main differences are: 

Non-OS SDK 

Non-OS SDK uses timers and callbacks as the main way to perform various functions - 
nested events and functions triggered by certain conditions. Non-OS SDK uses the 
espconn network interface; users need to develop their software according to the usage 
rules of the espconn interface.  

RTOS SDK 

1. FreeRTOS SDK is based on FreeRTOS , a multi-tasking OS. You can use the standard 
FreeRTOS interfaces to realize resource management, recycling operations, execution 
delay, inter-task messaging and synchronization, and other task-oriented process design 
approaches. For the specifics of interface methods, please refer to the official website of 
FreeRTOS or the book USING THE FreeRTOS REAL TIME KERNEL-A Practical 
Guide. 

2. The network operation interface in RTOS SDK is the standard lwIP API. RTOS SDK 
provides a package which enables BSD Socket API interface. Users can directly use the 
socket API to develop software applications; and port other applications from other 
platforms using socket API to ESP8266, effectively reducing the learning and 
development cost arising from platform switch. 

3. RTOS SDK introduces cJSON library whose functions make it easier to parse JSON 
packets. 

4. RTOS is compatible with Non-OS SDK in Wi-Fi interfaces, SmartConfig interfaces, 
Sniffer related interfaces, system interfaces, timer interface, FOTA interfaces and 
peripheral driver interfaces, but does not support the AT implementation. 
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3.18. Which functions should be called from user_init to avoid 
malfunction or invalid calls? 

1. wifi_set_ip_info and wifi_set_macaddr are only valid when called from user_init. 

2. It is recommended to call system_timer_reinit from user_init, otherwise, all timers 
need to be armed. 

3. If wifi_station_set_config is called from user_init, the lower layer will automatically 
connect to the corresponding router without calling wifi_station_connect. 

4. wifi_station_set_auto_connect is used to configure the device whether to 
automatically connect to the saved router upon start up. For example, if the interface is 
called from user_init with automatic router connection disabled, the device will not 
automatically connect to the router that time. If the interface is called elsewhere, then the 
device will not automatically connect to the router next time. 

3.19. How to wake up ESP8266 from Light-sleep mode using 
external GPIO or networking events? 

In Light-sleep mode, the CPU is suspended and does not respond to signals or interrupts 
generated from peripherals. Therefore, GPIO signals should be set up to wake the device. 
The wake up process typically requires less than 3 ms. 
wifi_station_disconnect();


wifi_set_opmode(NULL_MODE);	//	set	WiFi	mode	to	null	mode


wifi_fpm_set_sleep_type(LIGHT_SLEEP_T);	


wifi_fpm_open();		 	 	 	 	 	 	 	 	 	
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U,	FUNC_GPIO13);


gpio_pin_wakeup_enable(13,	GPIO_PIN_INTR_LOLEVEL);//Low-level	triggered	wake-
up	is	recommended!


wifi_fpm_set_wakeup_cb(ssc_fpm_wakup_call);


wifi_fpm_do_sleep(FPM_SLEEP_MAX_TIME); 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3.20. How to use ESP8266 FRC1 hw_timer? 
1. Model：


� 


(1) FRC1’s reference clock is 80 M. The division factor can be configured to 1, 16 and 
256. Difference of division factor will affect the duration of each tick. 

(2) FRC1 is a countdown timer. Interrupts will be triggered when the value of 
COUNT_VALUE	decreases to 0. The value of COUNT_VALUE	decreases by 1	at every 
tick. 

(3) FRC1 can be configured as auto-feed-mode or non-auto-feed-mode. 

• Auto-feed-mode: When interrupts are triggered, COUNT_VALUE will automatically 
take the value of FRC1_LOAD_VALUE and begin the decrement operation.  

• Non-auto-feed-mode: When interrupts are triggered, COUNT_VALUE will be set to 
the maximum value, 0x7fffff, and counting begins. 

(4) FRC interrupts can be configured as FRC1 interrupt source and NMI interrupt source.


NMI interrupt is an interrupt that can not be masked by CPU. NMI interrupt is LEVEL3 
interrupt in ESP8266 while other interrupts are LEVEL1 interrupts. NMI interrupt 
prevails over any other interrupts lower in priority. 

2. Note on SDK	HW_TIMER 

The division factor of SDK hw-timer is 16, the duration of each tick is 0.2 μs. The 
parameter of hw_timer_arm can be configured to μs, with a maximum value of 1677000 
μs. 

3.21. How to speed up connection to an AP after ESP8266 powers 
on? 

After ESP8266 connects to an AP, it will save the AP’s channel information in RTC memory. 

• When you reset ESP8266 by software or the ESP8266 wakes up from Deep-sleep 
mode, it will read the AP’s channel information from RTC memory, then try to connect 
the AP in the channel. 
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• But if the ESP8266 goes through a power cycle or is hardware reset, the RTC memory 
will be cleared. The ESP8266 will then scan through all the channels, which takes some 
time. 

You can try the following solution to save and restore the AP’s channel information when 
you power on or reset ESP8266 by hardware. By doing so, you can avoid the situation 
where ESP8266 scans all the channels to search the AP it connected to last time. This can 
help speed up connection time on startup. 

• After ESP8266 connects with an AP, use function wifi_get_channel to read current 
AP’s channel information, then you can save the AP’s channel information in the SPI 
Flash. Before writing the channel information, you should verify that the channel 
information is valid. 

• When the ESP8266 is then reset by hardware or goes through a power cycle, user 
firmware can read the saved channel information from flash. By calling 
WRITE_PERI_REG(0x600011f4,	1	<<	16	|	channel), the AP’s channel information can 
be written to the RTC memory. The channel information can be directly accessed from 
the RTC memory to help speed up connection time. 

• Note that the auto connection function should be enabled for the ESP8266 to read the 
AP’s channel information, and to connect to the AP in that channel. 

Only channel information is cached in RTC memory. The other information (such as SSID 
and Password) is saved in Flash, when you call the function wifi_station_set_config.

3.22. ESP8266 enters boot mode (2,7) and hits a watchdog reset. 
What could be wrong? 

Please make sure that when ESP8266 boots, the strapping pins are held in the required 
logic levels. If externally connected peripherals drive the strapping pins to an inappropriate 
logic level, the ESP8266 may boot into an inappropriate mode of operation. In the absence 
of a valid program, the WDT may then reset the chip. 

As good design practice, it is recommended that the strapping pins be used to interface to 
inputs of high impedance external devices only, which do not force the strapping pins high/
low during power-up. 

3.23. What does the ESP8266 boot mode information printed on 
power-up signify? How can the boot mode be changed? 

The ESP8266 evaluates the status of the boot strapping pins on power-up and decides 
which mode to boot into. 

⚠  Notice: 

If your application requires very frequent hardware resets or goes through frequent power cycles, it is 
recommended that you use external RTC memory for backing up channel information. Very frequent writes 
to the flash memory is not recommended as the flash write cycles are limited.
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Here is an example of ESP8266 boot mode information printed on power-up: 

ets	Jan		8	2013,rst	cause:1,	boot	mode:(3,2)


The first digit (3) of boot mode represents the current boot mode of ESP8266. 

As the table below shows, the boot mode is determined by the 3-bit value represented by 
the strapping pins: [GPIO15, GPIO0, GPIO2]. 

3.24. Why does ESP8266 print ets_main.c and not work as 
expected during the boot-up? 

During the boot-up, ESP8266 prints ets_main.c when it cannot find any available program 
to run. In this case, please check the bin files you’ve downloaded in ESP8266 and the 
addresses to which you downloaded your bin files. 

3-Bit Value of the Strapping Pins/
[GPIO15, GPIO0, GPIO2] Boot Mode

7 / [1，1，1] SDIO HighSpeed V2 IO 

6 / [1，1，0] SDIO LowSpeed V1 IO

5 / [1，0，1] SDIO HighSpeed V1 IO

4 / [1，0，0] SDIO LowSpeed V2 IO

3 / [0，1，1] Flash Boot

2 / [0，1，0] Jump Boot

1 / [0，0，1] UART Boot

0 / [0，0，0] Remapping
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4. Hardware 
4.1. What are the general power supply requirements of the 

ESP8266? 
Digital voltage requirement: 1.8 V - 3.3 V 

Analog voltage requirement: 3.0 V - 3.6 V (The lowest possible analog voltage is 2.7 V.) 

Peak analog circuit current: 350 mA 

Peak digital circuit current: 200 mA 

Note: CHIP_EN works at 3.0 V - 3.6 V, please use a level converter to ensure compatibility 
with digital logic at 1.8 V. 

4.2. What factors must I consider when designing a robust power 
supply for the ESP8266? 

Power supply design for RF circuits is an art in itself and is a large subject. However, here is 
a small checklist to ensure you include the important components: 

1. If you are using an LDO regulator, please make sure that the difference between Vin and 
Vout is sufficiently large for the LDO regulator to operate properly. 

2. The power rail decoupling capacitor must be located physically close to the ESP8266 
and should have a low ESR. 

3. Please do not directly attach peripherals with 5 V logic to the ESP8266. 

4. If the ESP8266 is being powered from a DC-DC converter, ensure that you follow good 
practices when designing the converter. Ripple should be filtered with cascaded LC filter 
stages if necessary. 

4.3. Why does the ESP8266 draws excess current on power-up 
and does not boot properly? 

The ESP8266 is highly integrated with RF circuits and digital control circuits. When booting, 
functions such as RF calibration may draw an appreciable amount of power. The maximum 
analog power (instantaneous) may be considered to be 500mA and the digital circuits may 
draw a peak current of around 200 mA. The normal operational current is typically around 
100 mA, depending on the application and circuit design. 

Therefore, your design must provide for a voltage regulator that can provide 500 mA 
without suffering a drop in the output voltage which is outside the operating specifications. 
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4.4. Can I use a LiPo cell or 2xAA cells directly to power the 
ESP8266? 

2xAA batteries can power up the ESP8266. Li-Po cells have a higher voltage swing while 
discharging and therefore must not be used to power ESP8266 directly. 

The ESP8266 contains precision RF circuitry which is affected by temperature or voltage 
drifts. Directly connecting any RF circuit to an unregulated power source is NOT 
recommended. 

Use of a DC-DC converter or LDO regulator is highly recommended to ensure that the 
ESP8266 performs as specified. 

4.5. Is there any specific requirement for powering the SPI flash 
memory? 

The SPI flash memory is an integral part of the system as it stores the user program and 
data. To ensure compatibility of digital logic, SPI flash voltage should match with the GPIO 
logic voltage level. 

4.6. What is the power-up sequence and how is the boot mode 
determined? 

CHIP_EN, the chip enable pin, contains no internal pull-up. It must be pulled externally to a 
high level to enable the chip. 

CHIP_EN should be pulled up after or at the same time as VDD33. After 60 ms of CHIP_EN 
going high, the device will determine the boot mode based on the status of GPIO15/
GPIO0/GPIO2, and then establish UART communication. 

EXT_RSTB: External reset pin. This pin features an internal pull-up and thus defaults to a 
logic high when left floating. A logic low on this pin will trigger chip reset. The external reset 
signal should be 0.25 IO+100 μs. The timing diagram is as shown: 

!  
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4.7. How is the RAM organized on the ESP8266? 
The ESP8266 contains 

IRAM: 64 KB 

DRAM: 96 KB 

The IRAM has been divided into 2 blocks.The initial 32 KB stores code that is not marked 
with ICACHE_FLASH_ATTR (.text); ROM code or secondary boot loader will load this kind of 
code from binary file in the SPI flash into IRAM. 

The latter 32 KB is the iCache that stores code marked with ICACHE_FLASH_ATTR. 

When Non-OS SDK is used, the initial 80 KB of DRAM is used to store .data/.bss/.rodata/
heap and the remaining 16 KB is used for ROM code. The size of the heap section 
depends on the size of .data/.bss/.rodata. 

When RTOS SDK is used, .data/.bss/.rodata/heap occupy the entire 96 KB of DRAM. 
The size of the heap section depends on the size of .data/.bss/.rodata. 

Description MIN MAX Unit

t1 The rise-time of VDD33 10 2000 μs

t2 The rise-time of EXT_RSTB 0 2 ms

t3 EXT_RSTB goes high after 
VDD33. 0.1 - ms

t4 The rise-time of CHIP_EN 0 2 ms

t5 CHIP_EN goes high after 
EXT_RSTB. 0.1 - ms
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5. Peripheral 
5.1. What are the specifications for the internal ADC of ESP8266? 

Channel: 1 

Sampling rate:  

• 100k samples/sec (Wi-Fi modem turned off) 

• 1k samples/sec (Wi-Fi modem normally active) 

Resolution: 12-bit (10-bit read by system_adc_read()) 

5.2. What are the bitmap and register information for the internal 
ADC of ESP8266? 

The ADC is closely integrated with the internal RF circuitry and therefore, the bitmap and 
register information may not be available for open use. We are sorry for the inconvenience. 
Feel free to contact us for any specific information. What is ESP32 BLE operating current? 

5.3. How accurate is the internal ADC? 
When connected to routers, ESP8266 will enter modem-sleep in STA mode only, which will 
cause the changes of the internal chip currents and reference values, and thus result in 
abnormal ADC sampling. 

If a high accuracy is required, please use system_adc_fast_read API. But RF circuitry 
should be shut down before measuring and Wi-Fi will be disconnected. For an relatively 
lower accuracy when readings’ difference of 1 or 2 can be tolerated, we recommend users 
to configure Wi-Fi to non-sleep mode wifi_set_sleep_type(NONE_SLEEP_T). 
For lower accuracy, the user may enter sleep mode. Power consumption is lower in this case.  

5.4. What should I use the internal ADC for? 
The internal ADC can be used for temperature sensing or sensing approximate current 
drawn by external devices. Note that because the ADC readings are prone to noise, it 
should only be used for applications where high accuracy is not required. For example, 
thermal cut-off mechanisms, etc.  

5.5. What are the parameters for the function set_tx_data (u8 
tx_addr, u8 tx_cmd, and u8 tx_rep)? 

tx_addr is the sending address; 
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tx_cmd is the sending command; 

tx_rep is the repeating time. 

5.6. Why are there illegible symbols on UART when booting up? 
How do I change the baud rate? 

With a 26 MHz crystal oscillator, the ESP8266 baud rate on power-up defaults to 74880 for 
UART0. This might be the reason for illegible characters on power-up. 

Users can change the UART configuration in user_main.c. For example, change the baud 
rate as follows: 
void	ICACHE_FLASH_ATTR 
uart_init(UartBautRate	uart0_br,	UartBautRate	uart1_br) 
{ 
 	 	//	rom	use	74880	baut_rate,	here	reinitialize 
 	 	UartDev.baut_rate	=	uart0_br; 
 	 	uart_config(UART0); 
 	 	UartDev.baut_rate	=	uart1_br; 
 	 	uart_config(UART1); 
}	  

5.7. How do I enable UART flow control? 
1. For configuring data format of UART communication, please refer to file uart.c in SDK/

driver_lib/driver/. 

2. The two steps to configure hardware flow control in UART communication are as 
follows: 

(1) Set the following attribute to 1 in uart.h: 
#define	UART_HW_RTS  	1	//set	1:	enable	uart	hw	flow	control	RTS,	PIN	
MTDO,	FOR		 	 UART0  
#define	UART_HW_CTS 	1   	//set1:	enable	uart	hw	flow	contrl	CTS	,	PIN	
MTCK,	FOR		 	 UART0 

(2) Configure hardware flow control threshold. 

The threshold of hardware flow control is highlighted by the red square in the 
following screenshot. When the number of bytes in RXFIFO is larger than 110, RTS 
will be pulled to logic high. 

!  
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5.8. How to use UART1 to print data? 
The UART1 only features a TxD pin to output log data alternatively when the primary 
UART0 is used for other applications. 

Refer to the following example to configure UART1:

void	ICACHE_FLASH_ATTR	


uart_init_new(void)	


{	


//	Wait	for	FIFOs	to	be	emptied


 	 	UART_WaitTxFifoEmpty(UART0);	


 	 	UART_WaitTxFifoEmpty(UART1);	


//	Configure	UART	settings


 	 	UART_ConfigTypeDef	uart_config;	


 	 	uart_config.baud_rate 	 	=	BIT_RATE_74880;	


 	 	uart_config.data_bits 	 	 =	UART_WordLength_8b;	


 	 	uart_config.parity 	 	 	 	 	=	USART_Parity_None;	


 	 	uart_config.stop_bits 	 	 =	USART_StopBits_1;	


 	 	uart_config.flow_ctrl 	 	 	=	USART_HardwareFlowControl_None;	


 	 	uart_config.UART_RxFlowThresh	=	120;	


 	 	uart_config.UART_InverseMask	=	UART_None_Inverse;	


 	 	UART_ParamConfig(UART0,	&uart_config);	


 	 	UART_IntrConfTypeDef	uart_intr;	


 	 	uart_intr.UART_IntrEnMask	=	UART_RXFIFO_TOUT_INT_ENA	|	
UART_FRM_ERR_INT_ENA	|	UART_RXFIFO_FULL_INT_ENA;	


 	 	uart_intr.UART_RX_FifoFullIntrThresh	=	100;	


 	 	uart_intr.UART_RX_TimeOutIntrThresh	=	2;	


 	 	uart_intr.UART_TX_FifoEmptyIntrThresh	=	20;	


 	 	UART_IntrConfig(UART0,	&uart_intr);	


//	Set	UART1	for	printing


 	 	UART_SetPrintPort(UART1);	


//	Register	interrupt	handler 
 	 	UART_intr_handler_register(uart0_rx_intr_handler);	


 	 	ETS_UART_INTR_ENABLE();	


} 
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5.9. Does the hardware SDIO interface support SD cards? 
Please note that the SDIO hardware only supports the device or slave profile, i.e. it cannot 
act as a host to control SDIO devices such as SD cards. 

5.10. What is the maximum speed supported by the SDIO interface? 
The maximum clock speed supported by the hardware SDIO slave module is 50 MHz. As 
SDIO specifies use of quad data lines, the effective maximum bit rate is 200 Mbps. 

5.11. LED connected to GPIO blinks once upon power-on - why is 
this happening? 

Whether the problems happens or not depends on the design of the LED driver. If the LED 
is powered on low level and IO is pulled to a logic low upon power-on, then the LED may 
blink. The reason is that except GPIO4 and GPIO5 related to flash, pull-ups for all IO pins 
are enabled. 

Solution: 

1. Disable pull-ups in user_init	upon power-on. 

2. If the first method doesn’t work, please contact us to obtain a customized boot.bin	file. 
IO pull-ups will be disabled when boot.bin is loaded into RAM, which is earlier than 
when user.bin is called. 

5.12. Why is there a small spike when PWM is started? 
Note that the PWM is generated by software and the small peak may be seen as a 
measure of the resolution PWM can achieve. In high accuracy mode, the resolution can be 
up to 22222 counts. However, the duty cycle can never be 100%.  

5.13. Why is the PWM duty cycle transitioning slowly? 
If you use the soft change APIs found in the SDK demo, such as light_set_aim and 
light_set_aim_r, these APIs are optimized for lighting applications and therefore cause 
smooth transitions. 

For changing the PWM quickly for other applications, please use pwm_set_duty to set the 
duty cycle desired and call pwm_start to implement new duty cycle immediately. 

5.14. Are the GPIO pins 5 V compatible? 
No, they are not. While many applications may get away by using a resistor voltage divider 
or series resistor, we highly recommend using a proper logic level converter chip to 
interface with 5 V logic. Not doing so may lead to damage to the ESP8266 in the long run. 
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5.15. Where can I find the register descriptions and bitmap of the 
GPIO registers? 

Please find the GPIO pin list and register description here: 

ESP8266 Technical Reference. 

5.16. How do I program the GPIO? 
Here are two examples of GPIO operations.  

For the Non-OS SDK, for example, configure input to MTDO and configure it to falling-
edge-triggered mode: 
void	ICACHE_FLASH_ATTR	gpio_init(void) 


{


 //GPIO	Alternate	Function  
 	 	PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U,FUNC_GPIO15);	 
 	 	GPIO_DIS_OUTPUT(GPIO_ID_PIN(15));	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //
Configure	it	in	input	mode. 
 	 	ETS_GPIO_INTR_DISABLE();	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	//Close	
the	GPIO	interrupt 
//Register	the	interrupt	function 
 	 	ETS_GPIO_INTR_ATTACH(GPIO_INTERRUPT,NULL);	 	 	 	 	 	 	 	 	 	 	 	 	


 	 	gpio_pin_intr_state_set(GPIO_ID_PIN(15),GPIO_PIN_INTR_NEGEDGE);	 	 //
Falling	edge	trigger 
 	 	ETS_GPIO_INTR_ENABLE()	;	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	//
Enable	the	GPIO	interrupt 
}


For the RTOS SDK: 
{ 


 	 	GPIO_ConfigTypeDef	gpio_in_cfg;	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //
Define	GPIO	Init	Structure 
 	 	gpio_in_cfg.GPIO_IntrType	=	GPIO_PIN_INTR_NEGEDGE;	 	 	 	 	 	 	 	 	//
Falling	edge	trigger 
 	 	gpio_in_cfg.GPIO_Mode	=	GPIO_Mode_Input;	 	 	 	 	 	 	 	 	 	 	 	 	 	//Input	
mode 
 	 	gpio_in_cfg.GPIO_Pin	 =	GPIO_Pin_15;	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	//	
Enable	GPIO 
 	 	gpio_config(&gpio_in_cfg);	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	//
Initialization	function 
 	 	GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS,	BIT(GPIO_UART_IN_NUM));  
 	 	gpio_intr_handler_register(interrupt_GPIO_UART);	 	 	 	 	 	 	 	 	 	//	
Register	the	interrupt	function 
 	 	_xt_isr_unmask(1	<<	ETS_GPIO_INUM);	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //
Enable	the	GPIO	interrupt


}	
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5.17. What is the buffer size on HSPI? What are the highlight 
features? 

The data buffer on the HSPI peripheral is 16 words (or 64 bytes). It is word accessible and 
is a continuous block on the memory map. The buffer is very flexible in the manner that the 
data contained can be transmitted LSB or MSB first and also in little-endian or big-endian 
fashion, which eliminates the need for software manipulation of data block sequence. 

5.18. How can the HSPI be used optimally when multiple devices 
are connected to the port? 

Unlike I2C interface, the HSPI clock speed need NOT be slower than the slowest member 
of the network. The speed can be dynamically configured according to the currently active 
peripheral. The pin HSPI_CS0 can be attached to the HSPI interface and can be controlled 
automatically. This should be used when devices such as LCDs are used, that require CS 
line activity frequently. 

Please use source termination resistors when interfacing to a very high speed peripheral. 

5.19. How to enable the entire 64 bytes of HSPI data buffer? 
• Use function 

CLEAR_PERI_REG_MASK(SPI_USER(spiNum),	SPI_USR_MISO_HIGHPART	); 

• to enable the upper part of the data buffer to be used for data transfer. 

5.20. How do I configure (H)SPI module for data transfer? 
Please refer to example/peripheral_test for Non-OS SDK. 

5.21. Which APIs will write or save data to the flash memory? 
wifi_station_set_auto_connect


wifi_station_ap_number_set


wifi_set_phy_mode


wifi_softap_set_config


wifi_station_set_config


wifi_set_opmode


⚠  Notice: 

There may be slight differences in the code for RTOS and Non-OS applications for programming the same 
functionalities.
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system_restart_enhance


system_restore


system_upgrade_reboot 

5.22. How is the system parameter area organized? 
The last 3 sectors of the primary flash memory are designated as the system parameter 
area. The first 2 sectors are copies (so that at least one copy is safe just in case power fails 
when writing to one sector). The last sector is used to save the flag to determine which of 
the first 2 sectors to use. This mechanism ensures that important configuration data is 
never corrupted due to power failure during erase/write operations.  

5.23. Can data be read/written freely at any address of the flash 
memory? 

No, all read/write operations must be aligned to the 4-byte (word) boundary. We highly 
recommend performing operations on blocks, instead of frequent, small data operations. 

5.24. Can the same flash read/write code work on all ESP8266 
devices? 

Please note that the flash memory is separate and is connected to the ESP8266 in the 
circuit. If your code is being run by systems with different flash memory configurations, note 
that the initial downloading of firmware is done by selecting the correct flash size. Also, it is 
the responsibility of the code to determine the flash address range and not write/read the 
addresses that are not available. 

For example, for a flash size of 8 Mbit, read/write over 0x100000 is not a valid operation. 

5.25. Is there an example of flash testing routine? 
Here is an example of flash texting routine: 

Uint32 sector is start sector, and uint32 cnt is sector count to erase. 
#define	FLASH_WRITE_LEN_BYTE	(1024*4)


#define	FLASH_WRITE_CONTENT	(0X10)


void	flash_sector_rw_test(uint32	sector,uint32	cnt)


{


 	 	char*	w_data=(char*)os_malloc(FLASH_WRITE_LEN_BYTE);


 	 	uint32	flash_operate=0;


 	 	uint32	i=0;


 	 	uint8	status=0;


 	 	os_printf("Test	Sector	is	0x%x\n",sector);
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 	 	if(NULL==w_data){


 	 	 	 	os_printf("Memory	little\n");


 	 	 	 	return;


 	 	}


 	 	os_memset(w_data,FLASH_WRITE_CONTENT,FLASH_WRITE_LEN_BYTE);


 	 	for(i=0;i<cnt;i++){


 	 	 	 	if(spi_flash_erase_sector(sector+i)==0)


 	 	 	 	{


 	 	 	 	 	 	os_printf("erase	sector0x%x	ok\n",sector+i);


 	 	 	 	}


 	 	 	 	else{


 	 	 	 	 	 	os_printf("Err:erase	sector0x%x	err\n",sector+i);


 	 	 	 	}


 	 	}


 	 	for(i=0;i<cnt;i++){


 	 	 	 	if(spi_flash_write((sector+i)*(FLASH_WRITE_LEN_BYTE),
(uint32*)w_data,FLASH_WRITE_LEN_BYTE)==0)


 	 	 	 	{


 	 	 	 	 	 	os_printf("write	sector	0x%x	ok\n",sector+i);


 	 	 	 	}


 	 	 	 	else{


 	 	 	 	 	 	os_printf("Err:write	sector	0x%x	err\n",sector+i);


 	 	 	 	}


 	 	}


 	 for(i=0;i<cnt;i++){


 	 	 	 	 	 os_memset(w_data,0x00,FLASH_WRITE_LEN_BYTE);


 	 	 	 	if(spi_flash_read((sector+i)*(FLASH_WRITE_LEN_BYTE),
(uint32*)w_data,FLASH_WRITE_LEN_BYTE)==0)


 	 	 	 	{


 	 	 	 	 	 	uint32	j=0;


 	 	 	 	 	 	for(j=0;j<FLASH_WRITE_LEN_BYTE;j++){


 	 	 	 	 	 	 if(*(w_data+j)!=FLASH_WRITE_CONTENT){


 	 	 	 	 	 	 	 	 os_printf("Err	Flash	read	w_data[%d]=0x%x\n",j,w_data[j]);


 	 	 	 	 	 	 	 	 //status=1;


 	 	 	 	 	 	}


	 	 	 	 	 	if(*(w_data+j)==FLASH_WRITE_CONTENT&&j==FLASH_WRITE_LEN_BYTE-1)
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	 	 	 	 	 	{


 	 	 	 	 	 	 	 	os_printf("Sector0x%x	Test	Ok\n",sector+i);


 	 	 	 	 	 													}


 	 	}


 	 	 	 	}


 	 	 	 	else{


 	 	 	 	 	 	os_printf("Err:read	sector0x%x	err\n",sector+i);


 	 	 	 	} 


 	 }


 	 	os_free(w_data);


 	 	w_data=NULL;


}


5.26. How to verify whether a flash chip support QIO or DIO mode? 
To verify if a flash chip supports QIO: 

1. QE (Quad Enable) corresponds to BIT(9) in the flash status register. 

2. The format of write status register is 01H+StatusReg1+StatusReg2. 

3. Specific commands should be supported: 

• Flash should support EBh command in order to support QIO mode. 

• Flash should support 6Bh command in order to support QOUT mode. 

To verify if a Flash chip supports DIO: 

Specific commands should be supported: 

• Flash should support BBh command in order to support DIO mode. 

• Flash should support 3Bh command in order to support DOUT mode. 

Note that ISSI Flash can support QIO mode. 

5.27. Why is some data lost or dropped in transparent transmission 
mode? 

This is because hardware flow control is no enabled. The transparent transmission mode 
uses TCP protocol, with 1460 bytes (which depends on the protocol stack) of data in every 
packet. As long as the network is good and the buffer is not consumed, data can be 
transmitted continuously. In transparent transmission mode, when the interval of time for 
serials to receive data is over 20 ms, the transmission is assumed to have ended and the 
received data will be transmitted to the network. So data may be lost if the network 
connectivity is not good. Please enable flow control to prevent data loss. 
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5.28. How many UART port does ESP8266 have? 
ESP8266 has two UART ports, UART0 and UART1. UART0 has Tx and Rx pins for data 
transmission, while UART1 only has Tx for printing debug log. Its Rx pin is occupied by 
SPI-flash. 

5.29. What is the GPIO level status? 
Except XPD_DCDC, other GPIOs can be configured to high level. 

The GPIO default level status after booting is: except 6 SDIO, GPIO4, GPIO5, and GPIO16, 
all the other GPIOs have internal pull-up resistors. To pull down the GPIOs, external pull-
down or inverting circuit is required. 

!  

5.30. How do I disable log printing upon power-up? 
By default, U0TXD will print ROM messages upon start up, which can be disabled for 
sensitive applications using the UART pin exchange function. Users can call 
system_uart_swap function to exchange U0TXD and U0RXD with U0RTS (MTDO/GPIO15) 
and U0CTS (MTCK/GPIO13) pins. 

After the exchange, still use U0TXD+U0RXD as the download pin on hardware. Connect 
MTDO to MCU RXD and MTCK to MCU TXD during communication. 

⚠  Notice: 

The external voltage level for GPIO cannot be 5 V. GPIO4/5 cannot be pulled up with external 1 M resistor. 
Please use 100 K resistor instead.
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6. Protocol 
6.1. What is the packet size for TCP / UDP transmission? 

TCP packet size is 1460 bytes and UDP packet size is 1472 bytes. 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7. RF 
7.1. How can I modify the default method of RF calibration? 

• During RF initialization, the partial-calibration method is used by default for RF 
calibration. 

The initialization only takes little time, and for this method, the value of byte 115 in 
esp_init_data_default.bin is ‘0x01’. 

• If boot duration is not critical, please use the overall-calibration method instead. 

- For NONOS SDK and versions of RTOS SDK earlier than 3.0, do either of the 
following: 

a) Call system_phy_set_powerup_option(3) in the function user_pre_init or 
user_rf_pre_init. 

b) In phy_init_data.bin, modify the value of byte 115 to ‘0x03’. 

- For RTOS SDK 3.0 and later versions: 

a) Go to menuconfig and disable 
CONFIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE. 

b) If CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION is enabled in menuconfig, 
please modify the value of byte 115 in phy_init_data.bin to ‘0x03’; If 
CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION is disabled, please modify the 
value of byte 115 in phy_init_data.h to ‘0x03’. 

• If you use the default method of RF calibration, and want to add the function of 
triggering overall calibration as a last-resort remedy: 

- For NONOS SDK and versions of RTOS SDK earlier than 3.0: 

Please erase the RF parameters to rigger overall calibration. 

- For RTOS SDK 3.0 and later versions: 

Please erase the NVS partition to trigger overall calibration. 
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8. Wi-Fi 
8.1. Why do I have problem connecting to router with IP 

192.168.4.X in SoftAP + Station mode? 
Default IP address of ESP8266 SoftAP is 192.168.4.1. 

The ESP8266 cannot distinguish if the IP address of the SoftAP and the Station are both in the same 
subnet, in this case, 192.168.4.x. Sorry for the inconvenience. 

8.2. I do have my router configured but connection fails and I 
cannot find the router. Why? 

Assuming you have filled in the SSID correctly, this could happen due to two possible 
reasons.  

1. The first possible reason is the use of non-standard characters in the SSID name. We 
recommend using standard characters only, such as English alphabets and numbers. 

2. The second and more probable cause is bssid_set parameter. Please set 
stationConf.bssid_set	=	0 if you wish to connect to a router whose MAC address 
need not be specified. 

8.3. ESP8266 SoftAP SSID and password modification does not 
take effect when calling wifi_softap_set_config(), even though 
the function returns successfully. Why? 

Configuration changes made to ESP8266 SoftAP by calling wifi_softap_set_config() 
may sometimes fail to take effect if the API is called inside a callback function. Situations 
like this may arise when, for example, an application tries to switch to Station mode from 
SoftAP mode from inside a callback function attached to the SoftAP events. 

To make sure that the modification made by wifi_softap_set_config() immediately take 
effect, please use the system_os_task() API to create a task that alters SoftAP settings. 
Also, make sure that the ESP8266 has successfully switched to SoftAP mode before any 
SoftAP APIs are called. For example: 

LOCAL	void	ICACHE_FLASH_ATTR 
some_callback_function	(void) 
{ 
		unsigned	char	res; 
		os_event_t	*testQueue; 
 
		res	=	wifi_set_opmode_current	(0x02);									//	Make	sure	ESP8266	is	in	
SoftAP	mode! 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		os_printf	("\r\nSet	op	mode	returned:	%d",	res); 
 
		testQueue	=	(os_event_t	*)os_malloc(sizeof(os_event_t)*4); 
		system_os_task	(set_ap_config,	USER_TASK_PRIO_1,	testQueue,	4); 
 
		ap_server_setup	(AP_PORT);																					//	Continue	with	server	
setup,	etc 
}


void	set_ap_config	(os_event_t	*e) 
{ 
			struct	softap_config	ap; 
 
			wifi_softap_get_config(&ap);																		//	Get	config	first. 
 
			os_memset(ap.ssid,	0,	32); 
			os_memset(ap.password,	0,	64); 
			 
			os_memcpy(ap.ssid,	"SSIDhere",	8); 
			os_memcpy(ap.password,	"PASSWDhere",	10); 
			 
			ap.authmode	=	AUTH_WPA2_PSK; 
			ap.ssid_len	=	0;																														//	or	its	actual	length 
			ap.max_connection	=	1;																								//	Max	no.	of	stations	
permissible? 
			wifi_softap_set_config	(&ap);																	//	Update	ESP8266	softap	
config!


} 

8.4. Why are there network connectivity and packet loss problems 
in ESP8266 SoftAP + Station mode? 

ESP8266 does support SoftAP + Station co-existing mode, however, ESP8266 has only 
one hardware channel which is shared between the Station interface and the SoftAP 
interface. As a result, ESP8266 SoftAP will dynamically adjust the channel value to be 
consistent with ESP8266 Station, which may cause the following cases.  

• Case 1 

- ESP8266 Station is connected to a router (assume the channel number is 6); 

- ESP8266 SoftAP mode is activated using wifi_softap_set_config; 

- The API will return true if configuration is correct, but the channel number will adjust 
automatically to be the same as that of the ESP8266 Station interface (which is 6 in 
this case). 

• Case 2 

- In this case, wifi_softap_set_config is called and ESP8266 is configured to SoftAP 
mode (assume the channel number is 5); 
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- Other stations are connected to ESP8266 SoftAP; 

- ESP8266 Station is connected to the router (assume the router channel number is 6); 

- ESP8266 SoftAP will automatically adjust the channel number to be the same as that 
of the ESP8266 Station (6 in this case); 

- As the channel changes, the station connected to the ESP8266 SoftAP will lose Wi-Fi 
connectivity. 

• Case 3 

- Other stations are connected to the ESP8266 SoftAP. 

- If ESP8266 Station keeps trying to scan for or connect to a router, ESP8266 SoftAP 
may lose connectivity, and UDP or ping packet loss may occur. 

This is because ESP8266 Station will scan through all channels to find the target router. 
Therefore, ESP8266 SoftAP keeps changing channel as well, leading to connectivity 
problems. 

In such case, users can set the timer and call wifi_station_disconnect on expiry to stop 
ESP8266 Station from trying to connect to the router. The other way is to call 
wifi_station_set_reconnect_policy and wifi_station_set_auto_connect at the 
beginning of the configuration to prohibit ESP8266 Station from reconnecting to the router. 

8.5. What is the channel setting for Wi-Fi? Can I select any 
channel of my choice? 

In this case, a channel refers to a specific frequency channel within the allowable range of 
frequencies allocated for use by Wi-Fi systems. Technically, you may use any channel of 
your choice. However, certain channels could be illegal in your country. 

Please consult our document ESP8266 Wi-Fi Channel Selection Guidelines for more 
information on how to select the best channel for your application. 

8.6. How to configure ESP8266 to connect it to a wireless router? 
There are the following methods to connect ESP8266 device to a wireless router: 

1. Enable ESP8266 SmartConfig. ESP8266 device can scan attribute packets in sniffer 
mode and connect to the router. 

2. Enable SoftAP mode for ESP8266 device to connect to smart phone and establish 
stable TCP/UDP connection. Then the smart phone can send SSID and password. 

3. Enable WPS configuration, which requires adding buttons to ESP8266 device or using 
the mobile app to control WPS after connecting the device to SoftAP.  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9. Tool 
9.1. How to download firmware to flash in the development phase 

and the mass production phase? 
In the development phase: 

The flash memory can be programmed by connecting the ESP8266 to the computer using 
a UART link. This can be achieved with a USB-UART converter for PCs that no longer have 
serial ports available externally. For instructions on how to use the Espressif official flash 
download tool, please refer to the document ESP8266 SDK Getting Started Guide. 

• Download tool: http://espressif.com/en/support/download/other-tools 

• Download method: http://espressif.com/en/support/download/documents 

For the mass production phase: 

If it is not convenient to program the ESP8266 for mass production using the UART 
interface, use the flash manufacturer’s programming tool to program the flash chips. Please 
use the Espressif flash download tool to generate a combined flash file. Write the binary file 
to the flash before board assembly. 

📖  Note: 

Please make sure you configure the flash mode, speed and size correctly before generating the combined 
binary.
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